Introduction

Algebra is the most basic technique throughout Mathematics. We will explore each technique systematically, including expansion and factorisation, algebraic fractions, solving equation(s) and completing the square.

- \diamond Lesson Aim:
 - Expansion of Binomial Products
 - Factorisation
 - Binomials
 - Trinomials
 - Four Terms
 - Operations in Algebraic Fractions
 Addition/Subtraction

EROFICIENCY DUCATION

1. Expansion of Binomial Products

Revision: perfect squares:

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

Example 1.1

- (a) Prove that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.
- (b) Hence, by using the fact that $(a b)^3 = [a + (-b)]^3$, prove that $(a b)^3 = a^3 3a^2b + 3ab^2 b^3$.

EROFICIENCY
DUCATION

Perfect cubes:

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

NOTE:

The power of <u>a decreases by 1</u>, as the power of <u>b increases by 1</u>.

NOTE:

For the negative flip, it's $(-b)^n$, when n is <u>ODD</u>, the term is <u>negative</u>, when n is <u>EVEN</u>, the term is <u>positive</u>.

Step 1. Write the terms of <u>a and b</u> with the corresponding pattern first.
Step 2. Fill in the <u>coefficients</u>.

Example 1.2

Expand the following expressions:
$(a) (x + 2)^{3}$

(b) $(3x - y)^3$ (c) $(5x - 2y)^3$

EROFICIENCY
JDUCATION

Exercise 1.1

Simplify the following expressions:

(a) $(3x + 1)^3 + (2x - 3y)^2$ (b) $(a + 3b)^3 + (3a - b)^3$ (c) $(s + 2)^3 - (2 - s)^3$

2. Factorisation

Step 1. <u>ALWAYS</u>	find the <u>highest commo</u>	<u>n factors</u> of <u>all the terms</u>
first.		

Step 2. If there are <u>two terms</u>, try <u>difference of squares</u>, <u>difference</u> <u>or sum of cubes</u>.

Step 3. If there are three terms, try quadratic factorisation.

Step 4. If there are <u>four terms</u>, try grouping in pairs.

Binomials

Revision: difference of two squares: $a^2 - b^2 = (a - b)(a + b)$ Example 2.1 (a) Prove that $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

(b) Hence, by using the fact that $a^3 + b^3 = a^3 - (-b)^3$, prove that $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$.

DUCATION
DUCATION
DUCATION
DUCATION

Difference of two cubes:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Sum of two cubes:

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

NOTE:

(a - b) first, then from a^2 , the power of <u>a decreases by 1</u>, as the power of <u>b increases by 1</u>.

NOTE:

For the negative flip, it's $(-b)^n$, when n is <u>ODD</u>, the term is <u>negative</u>, when n is <u>EVEN</u>, the term is <u>positive</u>.

Example 2.2

Factorise the following expressions as much as possible:

(a) $x^3 - 8$ (b) $216 + a^3$

DUCATION

(c) $64a^3b^3 + 1$ (d) $81m^3 + 3n^6$

TOUCATION

Exercise 2.1

Factorise the following expressions as much as possible:

Theory Note

(a) $25y - y^3$ (b) $a^4 - b^4$ (c) $x^6 - y^6$

DUCAION
DUCAION

Trinomials

Step 1. Find <u>two factors</u> that gives a <u>PRODUCT OF <i>ac</i></u> and a <u>SUM</u>
<u>OF</u> .
Step 2. Construct <u>two brackets</u> and <u>split ax^2</u> into _x and _x, the
two numbers must be able to <u>divide the two factors</u>
correspondingly.
Step 3. <u>CROSS multiply</u> to fill up the second terms and <u>multiply</u> to
get the <u>two factors</u> .

Example 2.3

Factorise the following expressions as much as possible:

(c) $a^2 + 12ac - 28c^2$

Exercise 2.2

Factorise the following expressions as much as possible:

(a) $2x^2 + 5x + 2$ (b) $6x^2 - 11x + 3$ (c) $9x^2 - 6x - 8$ (d) $12 - 29x + 14x^2$

(e)
$$6d - 4 - 2d^2$$

(f) $9x^2y^2 - 12xy - 5$
(g) $6s^2 - 11st - 10t^2$

Grouping in Pairs

Step 1. Factorise in <u>pairs</u>.Step 2. Factorise the <u>COMMON FACTOR</u>.

Example 2.5

Factorise the following expressions as much as possible:

Exercise 2.3

Factorise the following expressions as much as possible:

(a) 12xy - 9x - 16y + 12(b) $x^4 - x^2 - x - 1$ (c) $3t - ax^2 + tx^2 - 3a$

DUCATON
DUCATION

3. Operations in Algebraic Fractions

Additions/Subtractions

Step 1. Factorise all the denominators.
Step 2. Put all the fractions over the lowest common denominator.
Step 3. Add/subtract the numerators.

Example 3.1

Simplify the following fractions

(a) $\frac{52}{6}$	$\frac{x}{5} + \frac{7x}{5}$	$\frac{1}{8}$					
				B		<u>=</u>	

(b)
$$\frac{3}{x^2 + 2x} - \frac{2}{x^2 - 4}$$

(c) $\frac{1}{x^2 - 4x + 3} + \frac{1}{x^2 - 5x + 6} - \frac{1}{x^2 - 3x + 2}$

EROFICIENCY

Exercise 3.1

Simplify the following fractions

(a)
$$\frac{a^2}{a^3 + b^3} + \frac{a - b}{a^2 - ab + b^2} + \frac{1}{a + b}$$